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The derivative of sin(z) (where z is measured in
radians) is given in standard calculus as cos(x). The

proof for this is usually based on a limit: lim sin(g) _

q—0

1. The proof, put simply, is:

y = sin(2) (
y + dy = sin(z + dz) (
dy = sin(z 4 dx) — sin(z) (

dy = sin(x) cos(dx) + cos(x) sin(dx) — sin(x)(
(

(

"
dy = sin(x) + cos(x) sin(dx) — sin(z) 5)
dy = cos(z) sin(dz) 6)
dy sin(dx)
I = cos(z)——= 1z (7)
dy
I = cos(x) (8)

While there is nothing wrong with the proof per
se, I have always found it unsatisfying, and, with a
dependence on knowing the limit (which is usually
found using calculus), a little circular. Therefore, I
have endeavored to provide a better proof based on
more basic mathematical assertions, founded on the
Pythagorean theorem and the unit circle.

I don’t know if this proof is unique to me, but I
have not found it referenced elsewhere. Therefore,
my goal is to make it more widely known, as I think
it is both interesting and instructive, as it shows (a)
the power of calculus, (b) the power of differential
thinking, and (¢) how we can make discoveries from
basic principles. If it is a new proof, then so much
the better.

1 Basic Assumptions

We will be analyzing triangles drawn on the unit cir-
cle. On a unit circle, the hypotenuse will always be 1.
Figure 1 shows the general setup. x will be the angle
measured in radians, a will be the adjacent, and p
will be the opposite.

Figure 1: A Triangle Inscribed Onto a Unit Circle
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Based on the Pythagorean theorem, we can say the
following:



a+p* =1 (9)
pP=1-a? (10)
a®>=1-p? (11)

(12)

Since the hypotenuse is 1, sin(x) = p and cos(z) =
a. The derivative of sin(x) with respect to x, there-
fore, will be g—i. We will be successful if we can prove
the following equivalency:

j—i =a (13)
2 Differential Analysis

If we take Figure 1, and budge the angle by dz, we
will get the picture shown in Figure 2.

Figure 2: Change in Triangle Based on dz
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A few important notes on Figure 2:

1. We are expressing all changes as adding differ-
entials, even if the differential itself is negative.

This is why a + da in the graph is shorter than
a on its own.

2. Since this is the unit circle, the angle change is
identical to the circumference change.

3. Since we are only changing by an infinitesimal,
and this is a smooth and continuous figure, then
the change on the differential is linear. In other
words, our picture is zoomed in enough that we
can treat the arc joining our two triangles as if
it were a straight line.

Because of this last point, we can see that length
of dz can be determined using the distance formula,
where the horizontal and vertical changes are simply
given by da and dp:

dzx = \/dp? + da?

Finally, we can take the differential of (9) to come
up with:

a*+p?=1 (15)
2ada+2pdp=0 (16)
ada+pdp=0 (17)
ada = —pdp (18)

b
da =—=d 19
a=——dp (19)



3 Making the Proof

Starting with (14), we can make substitutions and
simplifications as follows:

dz = +/dp? + da? (20)
» 2
2 _P
\/dp +( adp) (21)
2 P
dp? + o dp (22)
d

1—a?

dp? + dp? (23)

a2
2
2

dp?
Var (25)
dp

" (26)

= \/dp2 + el dp? (24)
a

T

Note that (26) could also have been negative. In-
spection of Figure 2 shows that dp will always have
the same sign as a (increasing until a is zero, then
decreasing while @ is negative). Therefore, choosing
the positive square root is the valid choice.

We are trying to figure out an alternative reading
of % Using (26), we can simplify this as follows:

dp _dp_dpa _

dz % 1dp “ (27)

As shown in (13), this proves that the derivative of
sin(z) is indeed cos(z). Additionally, this relies en-
tirely on the basics—the Pythagorean theorem, the
unit circle, the definition of sine and cosine, the defi-
nition of the radian measure of an angle, the distance
formula, and the power rule.



