
8 k Complex Specified
Information (CSI)

Collecting

Eric Holloway

Independent Scholar

Abstract

Intelligent Design Theory makes use of the concept of intelligent agency as a distinct
causal mode, distinct from chance or algorithmic modes of causation. The influence
of such agency is often detected by the contribution of information to a search pro-
cess. Assuming humans are capable of such causal roles, then it should be possible to
measure the amount of information that a human is contributing to such a process.
This is done by measuring the success rate for a search for a solution to a compu-
tationally hard problem by both humans and computers. The methodology used for
this experiment was not successful, but it is hoped that the experimental setup and
methodology will inspire further improvement and research in this area.

1 Introduction

Research comparing human cognitive capabilities to computer algorithms suggest hu-
mans possess supra-computational cognition. Humans are capable of finding good
solutions to computationally intractable problems, and this capability scales at a
faster rate with larger problems than the best known algorithms (Dry, Lee, Vick-
ers, & Hughes, 2006). Many popular games are algorithmically intractable to solve
(Viglietta, 2011). Programmers appear capable of solving halting problems (Bartlett,
2014a). People can solve insight problems, for which there is currently no known
computational method (Bartlett, 2014b). Observers can pick out targets in a picture
relevant to their goal independently of the target’s features (Gue, Preston, Das, Gies-
brecht, & Eckstein, 2012). Such capabilities either have never been algorithmically
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emulated, or violate well known and well substantiated computational constraints,
such as the computational complexity of the problem (Cormen, Leiserson, Rivest, &
Stein, 2001), the No Free Lunch Theorem (NFLT) (Wolpert & Macready, 1996, 1995)
and the halting problem (Cover & Thomas, 2006).

Intelligent Design Theory (IDT) provides a formal language to account for
observations of supra-computational cognition. According to IDT, intelligent agents,
such as humans, are capable of creating a new form of information called complex
specified information (CSI) (Dembski, 2005). Dembski’s work on search algorithms
(Dembski, 2006) implies that if human interaction can be incorporated into a search
and optimization algorithm, these algorithms can surpass the limitations of the NFLT
over a wide variety of hard problems. This is possible due to the unique ability
of intelligent agents, such as humans, to create CSI. A further implication is the
user does not need specialized interfaces or training for each type of problem. The
possibility of such a generalized interface is suggested by research demonstrating
context independent problem solving by humans (Sperber, Cara, & Girotto, 1995)
and suggested by IDT’s implications.

2 Problem Description

In the computational domain, it is problematic to identify whether human interac-
tions can be defined by an algorithm. Since all the interactions with the computer are
defined by a series of 1s and 0s, i.e., a bit string, the interaction can be codified by an
algorithm that outputs the same bit string. Consequently, on first analysis, trying to
computationally distinguish human interaction from algorithm output seems impos-
sible. If human interaction is indistinguishable from algorithmic output, then it is not
plausible human interaction can surpass the No Free Lunch Theorem (NFLT). Such
is the basic problem addressed: How is it possible to distinguish human interaction
from algorithm output?

Even though it is always possible to codify a series of events in a finite domain
after the fact, the question is whether such codification is possible prior to the event’s
occurrence. A prior codification is not possible in all cases; otherwise, it violates the
halting problem (Cover & Thomas, 2006). This means the possibility of codifying a
human’s interaction after the interaction has occurred does not necessarily entail it
can be codified before the interaction. Consequently, it is possible that with the right
experimental design a human’s interaction can be distinguished from an algorithm
output.

3 Background

The question is, what is the experimental design that can make the distinction be-
tween human and algorithm? One approach is to use the NFLT. The theorem sets
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precise, rigorous boundaries on the mathematical capabilities of algorithms. Any-
thing performing outside of these boundaries is by logical necessity non-algorithmic.
To show humans are supra-computational, one need simply show they do not abide
by the NFLT. Unfortunately, such a demonstration may be impossible. The NFLT
only applies across all problems within a very small, specialized subset of problem
types. As such, the NFLT is quite di�cult to apply in practice.

The Almost No Free Lunch Theorem (ANFLT) (Droste, Jensen, & Wegener,
2002) provides a solution. The theorem shows while the original NFLT does not apply
to most particular problem domains, the expected performance for most algorithms
on many real world problems does not vary significantly between algorithms. There
is almost no free lunch for a large portion of real world problems.

The ANFLT result implies that given a search algorithm, as long as the algo-
rithm is selected independently of the problem, it is unlikely the choice of algorithm
makes a significant di↵erence in search performance. Consequently, if human interac-
tion discovers a solution significantly better than search algorithms, it is very likely
the interaction was non-algorithmic, and therefore supra-computational.1

According to William Dembski’s research on search algorithms (Dembski &
Marks II, 2010), this supra-computational interaction takes the form of active infor-
mation creation. Active information is the information necessary to improve a search
algorithm’s expected speed in finding a target solution beyond that of a random
search. That is, with more active information, fewer search queries are necessary to
find the target solution.

Active information can be inserted into the algorithm from an existing source
of external information, or it may be created. In the case of the ANFLT, if the
search algorithm exhibits significant amounts of active information (i.e., finds a target
much faster than statistically expected), this information must be created since the
conditions of the ANFLT prohibit the information from being merely transferred from
an external source.

Since the information is created, it cannot come from either chance or necessity,
as these sources can only degrade or transfer already existing information. Addition-
ally, the information is specified by the degree it reduces the number of search queries
to find the target solution. Information that is neither the product of chance nor
necessity and is specified is complex specified information (CSI) (Dembski, 2005) as
defined by Intelligent Design Theory (IDT). Furthermore, IDT claims CSI can come
from intelligent agents.

1Throughout this paper, the term “solution” refers to both the best/true solution to a problem,
as well as substandard solutions to a problem. Even in the case where there is only one true answer
to a problem, there may be other answers that are approximations of the true answer. The two
types of solutions are distinguished in terms of their optimality. The true solution is the optimal
solution.
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4 Approach

The approach in this study is to develop and test a general technique for integrating
human interaction into search and optimization algorithms. By incorporating human
interaction in this way, it is possible to determine whether humans violate the algo-
rithmic search constraints of the ANFLT and consequently create CSI as predicted
by IDT. This technique’s implementation consists of a software framework that can
be integrated with many di↵erent kinds of algorithms and problems, including both
single and multi-objective problems. The technique is referred to as CSI Collecting
(CSIC) throughout the rest of this paper.

CSIC is demonstrated as a proof of concept by using it to find public and
private keys for the RSA asymmetric cryptography system (Cormen et al., 2001).
The algorithm used in CSIC is a multi-objective genetic algorithm (Coello, Lamont,
& Veldhuizen, 2007). The human users will use CSIC through Amazon’s Mechanical
Turk service.

Success in the experiment is measured by the rate of solution improvement
(fitness increase) compared with problem information discovered, which is Fitness/In-
formation or FI for short. Solution improvement is measured by an objective function
in the genetic algorithm. The amount of problem information discovered is measured
by the number of solutions evaluated. The improvement due to human interaction is
compared to the improvement due to the genetic algorithm as measured by FI.

Since the project is currently in the exploratory stage, the comparison is in-
formal. It is assumed the algorithm discovers problem domain information at an
exponentially greater rate compared to human agents. Consequently, any greater or
equivalent improvement of fitness by the human agents compared to the algorithm
produces a very high FI value in favor of the human agents. Thus, the comparison
between human agents and the genetic algorithm is based purely on fitness increase.

5 Implementation

The general technique used is as follows. A standard multi-objective genetic algorithm
is used, a type of stochastic global search algorithm (Figure 8.1). A genetic algorithm
takes a set of solutions, measures how good each solution is according to some fitness
valuation function, varies the solutions to generate a new set using variation operators
such as mutation and crossover, and then from both sets of solutions selects an output
set according to some criteria. The algorithm then reiterates this process on each
subsequent output set until a stopping criteria is reached. The solutions themselves
are represented to the algorithm as fixed length bit strings. The functions generate
and select in Figure 8.1 can each incorporate an intelligent agent. In the implemented
version of CSIC, only the select function incorporates human interaction, even though
the more idealized version can incorporate human interaction in the generate phase
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Figure 8.1: Stochastic global solution search algorithm

of the algorithmic process.

5.1 Data Flow

The data flow between the human and the algorithm is demonstrated in Figure 8.2.
Both the unguided and guided algorithms are run in tandem on the same solution set
for greater e↵ectiveness in discovering new solutions. For experimental purposes, this
does muddy the data to an extent, but not irrevocably. Human-provided solutions are
uniquely identified, and the phylogeny of each solution is tracked, making it possible
to derive the impact of human interaction.

The two processes are combined into a hybrid system because for real world
use algorithms and humans work well together. The algorithmic side is very good at
checking many solutions very quickly, thereby providing the user with better infor-
mation for making decisions on new areas of the problem to explore.

5.2 User Interface

In the user interface, the user is presented with a list of solutions from which he can
make his selection. The solutions are the strings of arbitrary symbols in Figure 8.3.
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Figure 8.2: CSIC data flow between user and algorithm.

Each solution is represented symbolically, so the user has no contextual clues as to
what the problem is that he is attempting to solve. This is done in order to create
a context independent interface that can be used for a wide variety of problems and
algorithms. The only information to which the user has access is similarities between
solutions (as shown by similarities in symbols) and the value of each solution. Once
the user selects a set of solutions, he picks the type of variation operators to apply
to the solutions and then presses “GO” to have the algorithm, as shown in Figure
8.1, create a new set of solutions. Dembski’s work implies that even with only this
information it is possible for the user to be able to provide active information to the
search algorithm because a prior external source of information is unnecessary to add
active information to the search since the user is an intelligent agent.

The types of operators have di↵erent credit costs since some operators discover
more information about the problem than others. It is important to track the amount
of information with which the user is making his decisions in order to fairly compare
his performance to that of the unguided algorithm. The user is rewarded based on
whether this new set of solutions improves over the best solutions found so far.

The actual implementation in Figure 8.4 is a simplified version of the interface
shown in Figure 8.3, since it is used by people on the Amazon Turk service. Due to the
low wage for using the interface, they cannot be expected to spend a long time trying
to understand the intricacies of di↵erent variation operators. Accordingly, credits are
done away with since the same operators are used in every iteration. Additionally,
the numerical score is replaced with a visual indication of solution value, where higher
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Figure 8.3: User interface concept for CSIC.

Figure 8.4: Actual user interface website.

valued solutions have a greater number of stars.
Otherwise, the basic idea is the same between the actual and conceptual inter-

faces. The users select solutions to guide the search algorithm and then press “GO.”
The users are paid a basic wage for using the webpage and are rewarded with a bonus
based on the value of new solutions discovered. The intent is to financially incentivize
the users to discover highly valued and highly unique solutions.
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5.3 Problem

CSIC is used to find the prime factors that generate keys for an asymmetric cryptosys-
tem. There is no known correlation between finding prime factors and multi-objective
genetic algorithms, nor with human input during the selection phase. This means the
problem and algorithm together meet the criteria for the ANFLT to apply.

Breaking asymmetric encryption is also an extremely hard problem, which is
why it forms the basis of much information transmission security. The asymmetric
cryptosystem is RSA (Cormen et al., 2001). The genetic algorithm uses a multi-
objective fitness function to measure how close a solution is to the correct set of
primes. To find the primes, the fitness function is given access to a true plaintext and
true cyphertext. The two objectives are:

1. Matching encrypted bits. The plaintext is encrypted using the keys generated
by the solution primes. This encrypted text is then compared with the true
cyphertext, and the number of matching 1 bits are counted. The 0 bits are
not counted because they generally overwhelm the number of 1 bits.

2. Matching decrypted bits. The true cyphertext is decrypted using the solution
keys, and its accuracy is measured as for the previous objective.

6 Results and Conclusion

The guided genetic algorithm received 500 human inputs from the Amazon Mechan-
ical Turk service. The human input contributed 1 out of 18 superior solutions found
(Figure 8.5). The one solution found by a human was also found by the algorithm.
However, the logs show all human input consisted of selecting every single solution,
which can be replicated by an algorithm.

This result did not validate the hypothesis, though the failure is due to method-
ological factors, as will be discussed in Section 8. Since both the human and algorithm
discovered the same solution, it is not clear the solution was originally found by the
human. Thus, in terms of the FI metric in Section 4, it is not possible to say whether
the human outperformed the algorithm.

7 Theoretical Objections

While the methodology for CSIC is still in its infancy, and its e�cacy has yet to be
demonstrated, there are also theoretical objections to the concept that have been or
could be raised. The following section attempts to provide answers to these objections.
In all of these objections the assumption is made that CSI, or active information,
cannot be created by algorithmic sources. Additionally, it is also assumed that active
information is a subcategory of CSI.
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Figure 8.5: Best solutions found from Amazon Turk experi-
ment. The objectives are described in Section 5.3.

7.1 Objection: Human intelligence is an algorithm with al-
ready high amounts of CSI

One objection to this methodology is that human intelligence is an algorithm that
already contains high amounts of CSI, especially since the ANFLT does not rule out
the possibility that a proximate algorithmic information source is available. It might
be the case that human minds are highly tuned algorithms for particular di�cult
problem domains. Consequently, humans will outperform all current state of the art
algorithms in these domains, but this does not preclude human intelligence being
algorithmic. This objection holds even in the case of the ANFLT.

Such an objection is valid. The CSIC experiment cannot categorically rule
out the possibility that human intelligence is a kind of algorithm. However, CSIC
can provide an inference to the best explanation between two competing hypotheses.
The first hypothesis asserts that the proximate cause, human intelligence, created the
information, while the second hypothesis states that a more remote intelligent agent
created the information.

To determine which hypothesis is better supported by a positive result in the
CSIC experiment, the principle of minimal CSI creation is proposed. The principle
is analogous to Ockham’s Razor. This principle states in the case where the creation
of CSI is presupposed, the explanation relying on the least amount of CSI creation is
preferred.

The first hypothesis relies on less CSI creation since the human only cre-
ates CSI for a particular problem instance. Hypothesis two requires the creation of
enormous amounts of CSI covering all possible problem instances the human might
encounter.
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Consequently, while the CSIC experiment does not rule out algorithmic human
intelligence, it does show that supra-computational human intelligence is the best
explanation of a positive result.

7.2 Objection: Supra-computation does not imply e↵ective-
ness on all problems

Another objection to this methodology is that even if human intelligence is supra-
computational, this does not imply that it is necessarily e↵ective on all possible
problems. It could be performing supra-computational actions which are still limited
in scope and thus preventing its use in arbitrary problems. This objection is also
valid. Consequently, the question is, in which problems do humans demonstrate
supra-computational abilities? One way to answer this question is experimentally,
by having humans work with di↵erent problems and seeing in which instances supra-
computational abilities are exhibited. This is the intent of the CSIC experiment.
There is no presumption supra-computational abilities will be demonstrated, only a
presumption that it is possible to detect such abilities within the experiment.

Research by Bartlett (2014b) suggests that even if humans do demonstrate
supra-computation, such a capability may depend on existing information, such as
axioms about the problem domain. If true, then the almost complete removal of
context in CSIC may render the user incapable of contributing active information to
the search algorithm.

7.3 Objection: Supra-computation is only exhibited in con-
text dependent interactions

This objection states that the removal of almost all context in CSIC is a method-
ological problem because experience seems to indicate that supra-computation only
occurs within situational contexts. A solution can only be created when the problem
is contextually understood.

However, the observation is not always true. One scenario similar to CSIC
where information is created is learning to read. When people learn to read a lan-
guage, they are presented with a string of symbols without an inherent context. They
learn the meaning of the symbols through external responses, such as getting a�r-
mation when mapping the symbols to the correct action or object.

7.4 Objection: Supra-computation requires holistic reason-
ing

This objection states that in order to solve a problem, the person solving must not
only know the problem, but also understand why the problem exists. Since the user
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of CSIC neither knows nor understands the problem at hand, he will be unable to
solve the problem.

There is a degree of holism available in CSIC, as the user can see many solutions
and valuations and thus look for overarching patterns. The user can understand at a
very abstract level the characteristics of good and bad solutions.

7.5 Objection: Fitness function in experiment cannot factor
primes for RSA keys

This objection is quite likely correct. However, even if correct, if human interaction
improves the solutions beyond the algorithmic limits, then the experiment achieves a
positive result. On the other hand, better choices of problems, such as well understood
pedagogical problems, would greatly improve the experimental design.

RSA cracking was chosen for this experimental investigation mostly because
the applicability of solving this problem is much easier to explain to a lay audience
than more pedagogical problems. Additionally, a successful result for this problem
would have direct, groundbreaking relevance for software engineering.

8 Future Work

While the essential methodology and implementation of CSIC have now been created
and tested, many areas of improvement remain. Additionally CSIC must be compared
to alternatives to see if CSIC is truly e↵ective and beneficial.

The main potential area of improvement is in verifying whether the Amazon
Turk input is truly human generated and whether the users are actually trying to
find patterns. Users have been known to script Amazon Turk jobs, and without such
verification in this case it is not possible to know with certainty whether the input is
human generated. When the logs from this experiment were analyzed, it turns out
the Amazon Turk users were just selecting all the solutions and not trying to find
patterns in the solutions. To provide a cleaner environment for experimentation, the
guided and unguided algorithms should be separated. Additionally, the data logging
needs to be time-stamped.

The algorithm and problem used in the experiment can be improved in nu-
merous ways. Pedagogical problems and algorithms should be used to compare the
e↵ectiveness of CSIC to the current state of the art. Practical problems where search
algorithms have already proven e↵ective should be explored to see if CSIC can provide
additional benefit. CSIC should also be compared to contextualized human-powered
search algorithms, such as Foldit, to see how the addition of context a↵ects search
e↵ectiveness.

Di↵erent forms of motivation should be explored. The Amazon Turk interface
relies on a financial motivation, which motivates users to cut corners and perform
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the task in the fastest way possible. Such motivation does not encourage users to
find extremely good solutions. If the interface is in the form of an entertaining game,
users are better encouraged to find good solutions. Furthermore, a simplified expla-
nation of the cutting edge relevance of their work provides an intrinsic motivation,
and encourages innovation as demonstrated by significant user innovation in Foldit
(Moore, 2012).
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