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Abstract

Our notions of causation in science are often unintentionally constrained by the math-
ematics we use. Typically, scientific investigations use algebraic or calculus-based
mathematics to model causes and effects. In these types of models, there is a pre-
dictive relationship between the cause and the effect. This predictive pattern is what
most people use to classify events as materialistic, leaving events that are not so
classified as non-materialistic. Mathematics over the last century has introduced new
formalisms that cover functions that do not conform to the materialistic pattern.
While these functions cannot always predict outcomes for typical cases, they can be
studied and analyzed in other ways, and therefore can be used for knowledge-building.
Therefore, by expanding the mathematical toolset, investigators can better identify
and model non-materialistic causes.

1 Introduction

One of the largest barriers to considering alternatives to naturalism is that it is
difficult for people to conceive of what sorts of causes lie outside of the naturalistic
paradigm and how they might be modeled. ~While some people can see that there
must be more to the world than what is contained in naturalism, most view those
parts of reality as fundamentally enigmatic. This has even led many who disagree
with naturalism on a fundamental basis to do their work under a naturalistic rubric.

113



114 Describable but Not Predictable

It has also prevented people from attempting rigorous studies of phenomena that are
outside of naturalism’s domain.

Therefore, for any alternative to methodological naturalism to take hold, meth-
ods of analyzing events that are beyond the reach of naturalism must be developed.
Since non-naturalistic phenomena are categorically different than naturalistic phe-
nomena, such methods will be necessarily different and may provide different kinds
of information about the events than the kinds of information we are used to having.

Such modeling should not be judged as successful or unsuccessful based on whether
or not it matches the kind of information obtained from naturalistic models, but on
whether or not it matches reality and provides helpful information that can inform
decisions and can be combined with other forms of knowledge.

However, before we look at how to model non-naturalistic phenomena, we must
first establish what it means for a particular phenomenon to be non-naturalistic.

2 Computability as a Demarcation

The first problem in developing alternatives to methodological naturalism is with
determining what counts as a naturalistic or non-naturalistic phenomenon. While
most people think that such a demarcation is intuitively obvious, on closer inspection,
this becomes a rather difficult problem. Several attempts at creating a demarcation
have been attempted and most of them have failed.

First of all, we will equate naturalism with physicalism—the idea that all know-
able phenomena are in some sense physical. Without this restriction, naturalism just
means “everything,” and defining an idea as “everythingism” is unhelpful. Physical-
ism is what most people mean when they talk about naturalism. However, this leaves
us to define what it means for something to be physical. Without a solid definition
in place, the category is meaningless (Stoljar, 2009).

For instance, let us imagine that ghosts are real. Are they physical? By what
criterion could we classify them either way? It is true that ghosts are often considered
non-physical beings, but on what rule might we make such a determination?

Some might say that an event is physical if it is observable and detectable.
Let’s say, then, someone found a way to detect ghosts and their effects. Are ghosts
then considered physical? A demarcation between physical and non-physical that
puts ghosts on the “physical” side seems nonsensical. Others might say that an event
is physical if it is testable. But, again, if we developed a mechanism that tests for
ghosts, then ghosts would be physical.

Physicalists oftentimes define “physics” to include anything that has effects.
However, non-physicalists believe that their categories (i.e., mind, spirit, etc.) do
in fact have effects in the physical world. Therefore, not only is such a definition of
physical nonsensical (given the ghost example), it also does not put itself at odds with
the non-physicalist claims. Bartlett (2016) goes into more detail on the problems of
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demarcation for physicalism and materialism.

To make a real distinction between these classes of phenomena at all, we need
an objective criterion that takes into account both the features that physicalists and
non-physicalists find important. No criteria is likely to have universal agreement, but
for a criteria to be worthwhile it should have at least some who agree with it on both
sides of the issue.

One criteria proposed by physicalists to distinguish between physical and non-
physical phenomena is computability. Under this rubric, physical processes are those
whose results can, at least in principle, be calculated by computational systems, while
non-physical processes are those which cannot. This thesis is described and defended
more fully in Bartlett (2014).

This demarcation has many advantages. First, it is objective. Computation
and computability is a well-studied topic. One can prove that certain mathematical
functions are non-computational. Second, it is used by physicalists themselves. Hav-
ing a demarcation criterion that is agreed upon by both parties makes discussion and
progress possible. Third, since computation is a finitary mode of acting, having com-
putation as a criteria means that events themselves must obey finitary logic, which
is a reasonable requirement from a physicalist standpoint.

Therefore, for this paper, we will use computability as the demarcation criteria
between naturalistic and non-naturalistic modes of causation.

3 Elementary Functions and Causation

Many of our ideas of causation, especially in the sciences, come from our experiences
in mathematical education. I have no general criticism of mathematical education
to offer (I myself teach math in the way described here), but it is important to note
that the way math is taught and the way we learn it predisposes us to thinking about
reality in certain ways. When lecturing calculus-level students, I try to at least alert
students to the ways that their experience with lower-level mathematics biases them
to thinking about the world in certain ways.

Most of the functions familiar to students are what I will call well-behaved func-
tions. The biggest defining character of smooth functions, at least as I am considering
them, is that they are smooth; specifically, they are C“ smooth over a majority of
the important parts of their range. C* smoothness refers to the number of times that
a function can be differentiated successfully resulting in a continuous function, with
k indicating the number of times a function can be differentiated.

For instance, take the following function:

9 .
ro={5 1z, (7.)

ifx <0

This function has C! smoothness. The function itself is continuous, and its first
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derivative is continuous. However, its second derivative is discontinuous at x = 0,
because the left-hand limit is zero while the right-hand limit is two.

Polynomials by themselves are all C"* smooth. Likewise, sin and cos are C*°
smooth. Most functions that students encounter in the early years of mathematics
are C'°° smooth.

These functions are also C“ smooth. This level of smoothness means that
not only are the functions C'*° smooth, but also that their Taylor series expansion
converges. This is hugely important in the natural sciences for a quite unexpected
reason.

If a function is C smooth, then that means a small sample of the data can be
extrapolated out infinitely simply by observing the small sample with more and more
detail. For example, to do a Taylor series for a function f around a specific point A,
I need only find the derivatives of the function near A in order to model the entire
function f. As I find the value of higher and higher derivatives of f at point A, I get
closer and closer to its behavior for any value at all.

The significance of this is that, for C functions, to find the behavior of f at B,
for any B, I need only to analyze the behavior of f at A in sufficient detail. 1 have
no need whatsoever of analyzing f at B or even near B in order to have a reliable
estimation of its value, assuming I can get enough resolution of the function f at A.

For a more specific example, let’s say that I had a phenomenon P that followed
the sin function such that the true effects of the phenomenon could be given by
P = sin(q) (where ¢ is some other quantity that is affecting the output), but I was
not aware of the existence of the sin function, nor of the fact that P behaved that
way. Let us also say that I could only vary ¢ within the range of 0 to 0.8 with my
experimental apparatus, but could measure both ¢ and the result of the phenomena
with infinite accuracy. Because the phenomena is C* smooth, this means that even
with my limited data set, I can determine the behavior of P for any value of ¢ using
only this data.

So, if I vary ¢q between 0 and 0.8 I will get the graph shown in Figure 7.1

But, if I measure the velocities, accelerations, accelerations of accelerations, and
so forth, I can eventually get the full picture of what the phenomena is doing in the
long term, as you can see in Figure 7.2.

Therefore, even though my sample is monotonically increasing and has a range
between 0 and 0.0998 (and is in fact nearly linear in this range), if I were able to ana-
lyze it with sufficient detail, I could calculate its true range (—1 to 1), and determine
that it is cyclical with a period of 27. So, even though I analyzed a near-linear, tiny
portion of the function, by being able to view its velocities, accelerations, accelera-
tions of accelerations, and so on to a sufficiently high resolution, I can determine the
large-scale patterns of behavior of the function.

For functions that work this way, it is a fantastic quality. The problem, however,
is that all of the functions we work with in lower-level mathematics have this quality,
and therefore students make the assumption that functions should and must work
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Figure 7.1: The Sine Function Over a Restricted Domain
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Figure 7.2: The Sine Function Over a Larger Domain
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this way. The idea that there may be functions that do not behave this way is foreign
to non-mathematicians. Therefore, when envisioning causation, it is assumed that
causation itself must follow this pattern.

It may very well be true that causes that follow this pattern are easier to analyze
using current scientific methodology. The question, though, is whether we want to
limit science to only follow these causative patterns, or if we want to be able to find
those that are more elusive.

As mathematical knowledge has progressed, more and more functions have been
discovered that do not match traditional expectations in smoothness and other cate-
gories. However, their introduction into the sciences has been very slow due both to
a lack of awareness and to metaphysical biases about whether or not causes can be
modeled by them (van Rooij, 2008).

4 Ways to Be Strange: A Partial Survey of Strange
Functions

In the previous section, we took a look at one way to be strange—by not being
C% smooth. I should note that the purpose of the prior section was not to argue
that all functions that are not C“ are non-naturalistic, but rather to show how our
expectations of how functions should behave intertwine with our expectations from
nature, and how deviations from those expectation can affect both the way that we
model nature and the way that we extrapolate our data to unknown values. In this
section, we are going to look at what attributes of a function make it strange in a
way that would lead us to consider that it is non-naturalistic.

As it happens, out of the total possible functions, most of them are not well-
behaved. That doesn’t mean that realized functions are mostly not well-behaved, but
the number of available pathological functions greatly outnumber those that are well-
behaved for almost any definition of pathological and well-behaved. Most of these
functions at least appear useless and very likely are useless. However, there are several
types of functions that are not well-behaved that may wind up being useful. Here
we will do a short and incomplete survey of functions that may have the potential
to model some interesting aspect of causation. We will term them “strange” rather
than “pathological” to avoid the automatically negative connotations. The goal of
this survey is not to say that any given function actually does model some event or
process in real life, but to stimulate the imagination to help people think outside of
traditional ways of thinking about causation and especially about modeling causation.
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4.1 Primes, Number-Theoretic Functions, and Lengths of
Causality

Number theory has some of the easier-to-understand strange functions. Many of the
functions in number theory are discrete rather than continuous so the question of
smoothness doesn’t really apply, though you can use analytic continuations to create
real versions of some of them.

A simple example of a function from number theory is the prime number func-
tion, where Prime(n) yields the nth prime number (starting with 2). For instance,
Prime(5) would yield 11 because it is the 5th prime number.

Another interesting function from number theory is the distinct prime factors
function, w(n). (This is a different w than the one for smoothness.) For this function,
the result is the number of distinct prime factors for the given number. Therefore,
w(64) yields 1, because 2 is the only prime factor, but w(30) yields 3 because it has
prime factors 2, 3, and 5. Figure 7.3 shows a graph of this function.

What makes prime-oriented number-theoretic functions interesting is that the
“length” of “causation” for each value varies. That is, the prime number 2 exhibits a
causal relationship to every other number in the number chain, but the prime number
3 only exhibits a causal relationship to every third number in the chain. A prime
number, then, is one in which there is no previous “cause” in play for its results.

Thus, while we normally think of causes as having uniform influences on fu-
ture events as other causes, number-theoretic functions help us to think about non-
uniform causation, where the reach of individual causes varies as well as the number
of causative influences of any given event.

4.2 The Cantor Function and Two-Way Causation

A classic strange function is the Cantor Function. This function is strange because it
is continuous over real numbers, almost entirely flat (i.e., non-flat spaces occur over
a measure zero of the function space), and its y value increases from 0 to 1 over the
space of 0 to 1 on the z-axis. Wherever it is not flat, it has an undefined (i.e., infinite)
derivative. The graph is given in Figure 7.4.

The graph of the Cantor function can be constructed as follows:

1. Start with a left-hand point at (0,0) and a right-hand point at (1, 1).

2. Find the point exactly halfway between the left-hand point and the right-hand
point, which we will call the midpoint. On the first iteration, this will be (%, %)

3. Draw a horizontal line % of the horizontal distance between the left-hand point
and the right-hand point, centered on the midpoint, which we will call the
midline.
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Figure 7.3: The w(n) function from 0 to 100
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Figure 7.4: The Cantor Function on the Unit Interval
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4. Perform steps 2-4 again twice. The first time we will use the current left-hand
point as the new left-hand point and the leftmost point of the midline as the
new right-hand point. The second time we will use the current right-hand point
as the new right-hand point and the rightmost point of the midline as the new
right-hand point.

This process will repeat indefinitely, with more and more intervals being created
each time. Assuming it proceeds an infinite number of times, it will be a continuous
function as described above.

What is interesting about the Cantor Function is that it describes two-way
causation. That is, the function starts with left and right points, and the middle
points are decided based on collaboration between them. Since many of the concepts
of alternatives to methodological naturalism involve some sort of dualism between
mechanical causes (where the initial conditions determine the outcome) and teleolog-
ical causes (where the final desired outcomes determine the intermediary steps), this
seems to be a place where a Cantor-like function may be beneficial.

Cantor-like functions establish a way to associate feedback between mechanical
causes on the left-hand side and teleological causes on the right-hand side. While the
Cantor Function itself may or may not model anything in particular in real life, this
type of function can help us expand our reasoning capabilities to be able to model
multidirectional causation.

4.3 Assertion-Satisfying Functions

In computer programming, Landin (1965) developed the concept of continuations,
which is an abstract control structure, where your location in the program can be
“bookmarked” to return to later. This allowed for the development of a variety
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of interesting control structures that work quite differently than the typical ones
considered in computer programming (sequence, selection, and iteration).

One of the more interesting ones is the ability to develop assertion-satisfying
functions. In an assertion-satisfying function, variables can take on ambiguous val-
ues (i.e., the variable ¢ could be assigned any of the values between one and five).
Then, during execution, a particular value is tried, but if the results do not satisfy a
downstream assertion, the results get thrown away, the function is backed up to the
bookmark, and a new value for ¢ is tried. It is possible that reality works like this.
It is possible that some of the laws of nature exist as assertions and that reality may
be able to back up and “try again” if the assertions do not match. In such a scenario
the laws of physics wouldn’t so much dictate what must happen, but rather only the
constraints of what could happen.

4.4 The Halting Problem and Related Functions

Another type of function that should be considered in modeling reality is the halting
problem and related functions. This is described more fully in Bartlett (2014), but a
condensed version will be provided here.

In computer programming, a computation is supposed to finish—it is supposed
to complete and yield a result. This is known as “halting.” Computations that do not
finish are said to be caught in an “infinite loop.” If you have ever had your computer
stuck in a situation where the cursor just spins and spins and never stops, it is possible
you have experienced an infinite loop. Computations are supposed to yield values,
and when they don’t, it leads to problems.

The deeper issue, however, is determining if a computation will halt or if it
will get stuck in some sort of infinite loop. One of the first discoveries of computer
science was the fact that there is no algorithmic way to tell if a given computation
will halt or if it will go into an infinite loop. That is, I cannot write a program that
will tell me, even if I know all of the inputs, whether or not a different program will
yield a result or go into an infinite loop. This is known as the “halting problem” in
computer science. For any given program/input combination, it will either halt or it
won’t—there is no other possibility. However, figuring out which ones won’t halt is
an impossible problem for a Turing-like machine.

There are many problems in computer science that are essentially incomputable
but could be computed if we were counterfactually able to write a program that solved
the halting problem. One such problem is the “busy beaver” problem. In the busy
beaver problem, the goal is to find, for a program of length N, what the largest output
a program can generate and still halt is. This is generally unsolvable, but could be
easily solved if we were able to write a function to determine the result of the halting
problem.

Even though we can’t implement a function to tell us whether a function halts
or not, we can reason about how such a function can be used and what sorts of
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properties it would have. An unimplementable function is called a Turing oracle or
just an oracle. Thus even though we couldn’t implement or predict the results of an
oracle, those are not the only types of reasoning available. Alan Turing, for instance,
used oracles to measure the relative difficulty of different types of problems, showing
that some problems are more or less complex based on the kind of oracle required.
Therefore, just because a function can’t be explained in terms of its operation, this
doesn’t exclude it from useful reasoning or knowledge-building.

Additionally, as argued in Bartlett (2014), it appears that humans are able
to solve something similar to the halting problem. If humans could not tell if a
program would halt or not, they would not be able to successfully program computers.
Therefore, it seems that humans have access to an oracle of some kind that allows
them to solve problems that are beyond computation. Robertson (1999) points out
that the development of mathematical axioms is itself a super-computational problem.
Therefore, the ability of humans to develop mathematics itself shows that humans
have access to some sort of Turing oracle.

Bartlett (2014) suggested that perhaps the oracle humans have access to is
the ability to generate needed axioms based on existing problems. The oracle was
described as A = I(Q, p, i, B), where (@ is the problem the human is attempting to
solve (with inputs p and i), and I is the human “insight” oracle function that reveals
the set of axioms, A, needed to solve the problem (). The function requires that the
human already have B—the set of all axioms needed to solve the problem, except
one. What is being proposed by the oracle function is that human insight is able to
generate axioms (a non-computational event as described by Robertson (1999)) when
humans are given a problem they cannot solve and all of the axioms they need to
solve it, except one. Thus, even though this function isn’t computable, it can be used
to reason about non-mechanical models of the mind.

5 Using Incomputable Functions in Modeling

As we have seen, by expanding our view of mathematics beyond the typical
well-behaved functions, we can incorporate models of non-mechanical (i.e., non-
naturalistic) causes and modes of operation into mathematical descriptions. Such
mathematical descriptions would enable better integration between naturalistic and
non-naturalistic causes at work in a system. For a system to be mathematical does
not mean that it must be predictive or even computational. Many functions in math-
ematics are not computable, and in fact, computability may only cover a very small
proportion of them.

One may wonder, why bother with mathematics at all? Mathematics is just a
formalization of logic. Using mathematics requires that a person distill their ideas
into the most rigorous and abstract form. Additionally, because mathematics as a
discipline is well-studied, boiling ideas down into mathematical forms, even if incal-
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culable, allows mathematical tools to be used to analyze and reason from these ideas.
It also makes it easier to combine different ideas. If each idea is expressed mathe-
matically, then the combination of ideas can likely be expressed mathematically, and
the logical consequences of these ideas can be more readily determined.

One of the advantages of our well-behaved functions is that their long-term
behavior can be arbitrarily extrapolated from limited observations. Additionally,
with a finite set of observations, it is difficult to distinguish a strange function from a
more well-behaved nearby function, especially within the limited data set. A major
issue with using strange functions in modeling is determining whether or not such a
function is what is being observed or if its more well-behaved nearby function is at
work.

Therefore, what is required for establishing a strange function as the basis for
an observed effect is a logical reason for preferring the function. That is, there must
be something in the nature of the causal relationships that would indicate the usage
of a strange function in a model. One other thing that may indicate that a strange
function is indeed required is the need to continually change the model with more
and more data. This may indicate that a strange function is at play, and the causal
relationships should be investigated to see if a strange function may properly model
what is happening.

Since this paper only presents a small smattering of the known strange functions,
more and more modeling power will be available by understanding more and more
strange functions and how they relate to causality. The ones presented here were
picked because the author could see ways in which they may be important to helping
researchers think about causality. Additionally, more functions may be available
by simple creative construction. Once the strictures of well-behaved functions are
removed, and a person gets acquainted with the nature of strange functions, the
ability to construct definitions of new strange functions to match the causality in
question will be increased.

While strange functions should not be introduced lightly, there is no reason
to avoid them in models. The preference for well-behaved functions is just that—a
preference. There is no reason why reality must conform to our preferences. Lin-
ear components in models are better-behaved than non-linear components, but that
doesn’t mean our models must always contain linear components. The goal of mod-
eling for science is to provide a deeper understanding of the nature of the subject
under investigation. Other goals (such as using models for engineering) may substi-
tute similar well-behaved functions in order to simplify calculations, but science, as
an attempt to learn more about the true nature of reality, should in most cases prefer
whatever function is the truest model of reality.
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6 Testing Models that Use Strange Functions

One of the key features of science is testability. As pointed out in Bartlett (2016),
the two main features of methodological naturalism that made it successful were that
it defined a scope of inquiry and it provided a system of justification. With well-
behaved functions, the system of justification is fairly straightforward. The model
will predict how a system will behave for tests that have not been performed yet;
the experimenter will then perform the tests and see if the results match the model
within a margin of error. With strange functions, however, the models do not always
predict behavior. Therefore, the system of justification used will have to be modified
in order to accommodate strange functions.

However, before we look at how we can test our new models, we should think
about why it is that we test models in the first place. The goal of testing is to allow
reality to push back on our ideas. That is, we have ideas about the nature of reality,
but our ideas must conform to external reality, not the other way around. Testing is
done to make sure that reality has a chance to give us feedback on the truth of our
ideas.

We should recognize that testing is not an absolute truth-teller. It is more
of a sanity check than a rigid determiner of truth. For a finite set of data points,
there are infinitely many functions that would be within the margin of error for those
data points (Kukla, 1996). So how might someone decide between two empirically-
equivalent theories? As it stands, our scientific ideas do not emanate entirely from
empiricism. If they did, then this would be a problem. Instead, empiricism provides
the dataset that we use to establish rationalistic models, and it provides additional
data to validate such models. But the models themselves are based on logical rela-
tionships between entities under investigation.

Therefore, the key to testing is not that the data points must be uniquely
determined by the theory, but rather that the theory must flow from a proposed
logical relationship between entities and the data must be consistent with it within a
margin of error.

Even though strange functions are not always calculable or predictive, they
do lend themselves to reasoning about relationships, otherwise they would not be
considered functions. Therefore, it is possible to find patterns that are true with
a strange function that may be tested for, even if the strange function itself is not
directly testable. In the next section, we will look at a specific example.

7 Randomness as an Exemplar Strange Function

While strange functions generally have not been given much scientific weight, one
in particular has been used regularly—randomness. While randomness is not well-
behaved like most of the functions within science, the willingness of scientists oper-
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ating under methodological naturalism to use it probably stems from the fact that
it does not appear on the surface to imply teleology (though see Bartlett (2008) for
an alternative view). Therefore, its adoption in the scientific community as a viable
model allows us to demonstrate the utility of strange functions in scientific modeling.

Randomness is actually a property of an infinite sequence. Therefore, no finite
sequence of events can prove that the sequence is random. Additionally, randomness
is not predictive. Therefore, including randomness in the model does not help to
predict any specific outcome. Thus, randomness matches what we have called strange
functions.

Since randomness doesn’t predict a specific outcome and cannot be tested di-
rectly, how was it included in scientific theories? Basically, if a model of an event
has multiple possible outcomes, and the outcomes proceed in an order that is statis-
tically stable but does not point toward any other structure, then the suggestion of
randomness is quite appropriate.

For instance, in a Poisson distribution, the mean is equal to the variance. There-
fore, one can “test” for such a distribution by checking the mean against the variance.
If they are close, then the suggestion that the process is a random process following a
Poisson distribution can be maintained. There are many different ways that the mean
can equal the variance, but if our formal reasoning leads us to expect such a distribu-
tion, and the distribution’s characteristic features match our expectations, then the
test can be considered confirmed. This is used, for instance, in the Luria-Delbriick
experiment where the test for randomness is used to determine if a mutation is in
response to a selective pressure or if the mutation preceded the selection.

8 Conclusion

The goal of the present paper is not to propose a specific idea or procedure, but rather
to assist researchers proceeding in directions at odds with methodological naturalism
by pointing to the stranger aspects of mathematics that can serve as tools when
investigating non-naturalistic phenomena. My hope is that researchers will be able to
unshackle their imaginations from the mathematics of naturalism but without losing
the rigor necessary to develop well-founded theories of how different aspects of the
world works. Likewise, making use of mathematics even when it isn’t well-behaved
will better enable integration of different models and phenomena.
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