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Abstract

Machine Learning, despite its name, can incorporate an oracle. One common form
of oracle interaction is known as active learning. Active learning samples {x,y} from
an oracle for f (the function to be learned). Imagination sampling is the converse
of active learning. Imagination sampling asks an oracle for hypotheses h from H
(hypothesis space). In this paper imagination sampling is compared with a purely
algorithmic approach to determine if oracle interaction outperforms a purely algo-
rithmic approach. The theoretical basis for imagination sampling is developed and
illustrated by simulating an oracle.

1 Introduction

The effectiveness of a machine learning algorithm can be measured by the number of
samples required to match f (problem) and h € H (hypothesis space). One approach
to improving machine learning is to incorporate oracle interaction. An oracle is an
external source of information. Machine learning approaches that incorporate oracle
interaction focus on how oracle interaction significantly improves the sampling of f.
This is known as active learning, along with a variant known as guided search described
below. However, there is no research into whether an oracle improves sampling of H.

2 Background

A sub-field of active learning is guided search. In guided search an oracle not only
labels data items, but also identifies data items for labeling. Attenberg et al. have
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shown that a guided search is superior to active learning in the area of website clas-
sification (Attenberg and Provost, 2010). It is useful for domains where the target
classification has a very small number of instances compared to the general popu-
lation. Additionally, guided search is good for classifications that are formed from
disjunctive subclasses. These are common problems encountered when putting active
learning to use (Attenberg and Provost, 2011). A similar approach is oracle guided
feature selection for particular classes. This is known as guided feature labeling (Atten-
berg, Melville, and Provost, 2010). Most recently, Attenberg has proposed a gamified
system called beat the machine (BTM). BTM uses oracles to identify the unknown
unknowns of a machine learning model. (See Attenberg, Ipeirotis, and Provost, 2015
for more information.)
(Classification model learning is divided into three different areas:

1. Query to classify data: y = f(x)
2. Select data to be classified: x € D
3. Select predictive model: h € H

There are four different approaches to optimizing these areas:

A. Random

B. Algorithmic
C. Oracle

D. Ground truth

3D is the goal of machine learning—an accurate prediction model. Traditional
machine learning is a combination of 2A (random sampling), 3B, and 1D. Semi-
supervised learning introduces 1B. The learned model is used to classify further data
for learning.

3A is used in the No Free Lunch Theorem to characterize the expected perfor-
mance of machine learning.

Active learning incorporates 1C (oracle labeler) and 2B into traditional ma-
chine learning. Guided search adds 2C. Finally, BTM and its predecessor equivalence
querying (Angluin, 1988) are another form of 2C.

Table 10.1 shows the areas covered in the literature. Most of the combinations
have been addressed.

Another approach is for an oracle to sample from H, the hypothesis space. This
approach is 3C. Sampling from H uses the oracle’s imagination so this approach is
called “imagination sampling.”

Oracle sampling of ‘H is unexplored in the literature. This project investigates
whether an oracle improves the sampling of H by comparing the effectiveness of
“imagination sampling” with algorithmic approaches.
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Table 10.1: Research grid

A B CD
11X X X X
21X X X
31X X X

3 Testing “Imagination Sampling”

The No Free Lunch Theorem (NFLT) states that all algorithms have exactly the same
performance when averaged over all problem domains. While particular algorithms
perform better on particular problem domains, it is extremely unlikely to pair the right
algorithm with the right domain. Consequently, the NFLT is used in two different
ways to test for non-algorithmic learning in the oracle: (1) in terms of the problem
domain, and (2) of the learning algorithm.

As stated, it is unlikely a particular algorithm will do well on a randomly selected
problem. If imagination sampling performs well on an arbitrary problem domain, then
the oracle is highly likely to have a non-algorithmic learning ability. The oracle cannot
have information about the dataset that the algorithms do not have.!

Similarly, for a particular problem, it is unlikely a randomly selected algorithm
will do well. The learning problem is constructed so algorithmic learning cannot
perform better than random sampling that is averaged over many problems. This is
a No Free Lunch (NFL) construction.

In either case, if the oracle performs better than algorithmic approaches, this
shows imagination sampling is generally better than purely algorithmic learning.

The NFL construction is a hypothesis space that shatters every dataset. A
hypothesis space shatters a dataset when it can represent any possible labeling of
items in the dataset. Algorithmic learning based on in-sample error (E;,) is not
possible in this hypothesis space, since a hypothesis with zero in-sample error can
always be found. However, learning based on compression is possible and will be
covered.

The oracle is compared to two classes of algorithms. The first class samples
hypotheses over the entire hypothesis space. The second class learns using a learnable
subset. The subset is learnable because it does not cover all possibilities and in-sample
error cannot be completely minimized. The oracle should be more effective than the
first class, and may be more effective than the second class. Effectiveness is measured
by the lowest out-of-sample error, E,,;, obtained.

A second issue is identifying when the oracle has found a good hypothesis. Since

1 This sounds like a contradiction since an oracle is defined as an external source of information.
If the oracle does not have information, then it is not a source of information. However, some oracles
can create information. Algorithms cannot create information. So, relying on an oracle that does
not initially have information can still be useful if the oracle can create information.
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the NFL construction shatters every dataset, overfitting is more likely to occur than
generalization. This means the hypothesis cannot be rated in-sample using F;, and
FEiest, the test dataset. Instead, the hypothesis must be rated by its conciseness.
Conciseness is measured by Kolmogorov complexity (KC).

This paper uses KC to identify when the oracle has found a good hypothesis.
Only an upper bound for KC can be calculated. Consequently, a gradient-based
approach is used with the upper bound to identify a good hypothesis.

4 Representation

As discussed previously, an NFL construction for the learning problem is a hypoth-
esis space that shatters every dataset. To shatter a dataset, we need a hypothesis
space that can represent all possible classifications for a dataset. The multibox is a
hypothesis space that represents all possible classifications for any dataset, and can
shatter any dataset. This makes the multibox an NFL construction. The multibox is
defined after the problem domain is described.

4.1 Problem Domain

The problem domain for this project is a 2D discrete grid. The target function f is
a particular classification of the cells, such as in Figure 10.1. The classification in
the image is represented by white and black cells. A hypothesis A from the hypoth-
esis space H is a classification region represented by light and dark gray cells. The
classification region does not have to classify the entire problem domain.

4.2 Multibox Definition

A multibox is a set of n coordinate 5-tuples. The fifth element is the box’s binary
classification. Each tuple defines an axis-aligned, rectangular box. The coordinates
are integers. The set of all boxes is M B. The set of boxes in the hypothesis is M B,.

MG, ={2,2,7,Z,0 or 1}

The parameters of each box are referenced by a subscript, boxy_4 with box, as the 0
or 1 classification.

The oracle places multiple axis-aligned, rectangular boxes on the data to form
a hypothesis. Each box classifies samples according to a single classification. For
example, a box that classifies samples as “ones” will classify all contained samples as
ones. If boxes overlap, samples are classified according to the last placed box. The
classification algorithm is shown in Algorithm 1.

We can see the multibox represents any classification if each box is the size of an
individual cell in Figure 10.1. This means the multibox can shatter all datasets, and
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Figure 10.1: Problem domain with an example target func-
tion (white and pure black) and classification region (light
gray and dark gray).

algorithmic learning is not possible. Algorithmic learning based on error minimization
cannot happen because an error can always be taken to zero. Learning through
compression cannot happen as compression is not computable in general.

Due to the NFLT the odds of a learning approach performing well on a particular
problem are too small to happen by chance. This is still true even if most or all real
world problems are learnable because the NFLT applies to learning approaches as well
as problems. If an approach does well on a decent number of different datasets, and it
is selected independently from the problem domain, then it is superior to algorithmic
learning.

Consequently, if experiments show imagination sampling is superior to algo-
rithmic approaches for multibox classification and other classification tasks then it is
superior to algorithmic learning in general.

Algorithm 1 Multibox classifier

1: procedure CLASSIFY(x)
2 result < NULL

3 for all box € M B, do
4: if z € bor then

5: result < boxy
6 return result
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5 Methodology

To test whether imagination sampling is superior to algorithmic techniques, the or-
acle is compared to two classes of algorithms. The first class learns over the entire
hypothesis space. The second class learns a learnable subset.

5.1 First Class of Algorithm

The algorithms in the first class are random box placement and guided box place-
ment. The random approach places boxes randomly until it has placed M boxes (see
Algorithm 2). Each box’s classification is assigned randomly.

Algorithm 2 Random placement

1: procedure RANDOMPLACEMENT(X, M)
2 MB, < LIST

3 for all iteration € 1 to M do

4: zgp <— UNIFORM (min; Xo;, max; Xo;
5: xg1 < UNIFORM (min; Xo;, max; Xo;
6 T10 < UNIFORM(mini X1i7 max; Xq;
7 x1; < UNIFORM (min; X1;, max; Xi;
8 class <+ CHOOSE(0, 1)

9 M B,.APPEND({x¢p, Zo1, Z10, T11, class})

)
)
)
)

10: return MBg

The guided box placement algorithm is initiated with the random algorithm by
placing N boxes. Then, it selects a subset M that maximizes the significance score
in Algorithm 3.

The first term, accuracy, prioritizes boxes that contain an unlikely number of
samples. The second term, correctness, prioritizes boxes that are likely to correctly
classify a sample.

« and [ are tunable parameters between zero and one. When both parameters
are zero, guided placement reduces to random placement. Two parameters are used
instead of just setting § = 1 — «, otherwise it is not possible to set both to zero
and achieve a random box placement. Consequently, both the random and guided
algorithms can be described by Algorithm 4.

5.2 Second Class of Algorithm

The second class of algorithms uses a learnable subset of H. The algorithm in the
second class of algorithms is the Set Cover Machine (SCM) algorithm (Marchand and
Taylor, 2003). The SCM algorithm finds a minimal multibox of square boxes that
cover all of one class of samples. A regularization parameter p penalizes classification
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Algorithm 3 Significance scoring

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

13:
14:

procedure SIGNIFICANCE(X, Y, box, a, 5)

Xuwidth < max; Xo; — min; Xo;
KXheight < max; Xq; — min; Xy,
Xarea — XwidthXheight

1 X

A % Xarea

box yiqin, <— boxr; — boxg

box height < boxs — boxs

bOT 4req — ABS(DOZ1yidinbOTheight)
ke oo

probability < POISSON(k, \)
accuracy < —aLOG(probability)

probability < ABS(1 — boxy — z\:yyeeg;;\y)

correctness < —[BLOG(probability)
return accuracy + correctness

Algorithm 4 Generalized box placement

1:
2
3
4:
o:
6
7
8

procedure BOXPLACEMENT(X,Y, N, M, «, [3)

M B, <~ RANDOMPLACEMENT(X, N)

scores <— LOOKUPTABLE

for all box € M B, do
scores[SIGNIFICANCE(X, Y, box, a, )] < box

SORTDESCENDING(scores)
M B, < scores.VALUES|1 ... M]
return M B,
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error in the SCM. p can range from zero to co. In this experiment, p = oo so there
is no misclassification error. Other values were tried but did not noticeably improve
accuracy, and they greatly increased computation time.

The standard SCM algorithm classifies samples outside of the set cover as the
alternative class. The SCM algorithm is modified for this experiment to only classify
the samples covered by the multibox and ignore samples outside the multibox. In this
way, it is similar to a deterministic version of generalized box placement in Algorithm
3.

The standard SCM algorithm has an O(N?) complexity. To improve runtime,
the sample count for the SCM is reduced to v/ N, while the other approaches still use
N samples.

6 Experiment

The dataset comes from a BNP insurance competition on Kaggle.com. and has 130
anonymized features and 130k samples. Anonymization keeps the oracle from having
access to domain knowledge.

The four approaches are trained and validated across a range of sample sizes
for F;, and Fi.s, from 100 to 500 samples using 50 sample increments. A separate
set of 1000 samples is used for calculating E,,;. The oracle’s multibox placement is
compared to the algorithmic approaches using F,,; in a batch after all experiments
are completed. FE,,; is calculated using Algorithm 1. s¢ represents the F,,; samples
covered by the hypothesis.

— classif
e 5 s (1)

x,YyESc |SC|

1. The samples are drawn randomly without replacement from the dataset to
create the training set. The samples are reduced to remove samples that are
missing data and are further reduced so there are an equal number of both
classes. This can result in a sample set containing much less than the initial
amount. For instance, if 100 samples are initially drawn, cleaning and equalizing
can leave only 30 samples.

2. The samples are preprocessed to be centered, normalized, and whitened. The
parameters for the preprocessing are recorded for use on the Ej. and E,u
samples.

3. The two algorithmic multibox hypotheses are generated with M = 5, meaning
each hypothesis consists of 5 boxes. This number is selected to be small so the
resulting hypothesis has a low complexity. For the guided multibox selection,
N = 100. This means 100 boxes are generated randomly. Then the 5 best boxes
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are selected for the hypothesis, as shown in Algorithm 4. The guided multibox

algorithm has parameters a = 0.5 and S = 0.5 in Algorithm 3.

4. The oracle (human user) visually selects a set of boxes it thinks will create a
good classification hypothesis. Figure 10.2 is an example M B, created by an

oracle.

x1id 57

_____

.___1'.__.___&);'.:'.3.'.:'.:1.._
tx,&& %0590 0 o
19 1_0°%q
Sold g%

Figure 10.2: Example of M B, generated by oracle.

x0id 30

5. Each hypothesis is then evaluated for classification error on a validation and test
dataset. Both datasets use different samples, which are also cleaned, equalized,

and preprocessed. The training dataset values are used for preprocessing.

7 Imagination Sampling Results

The experiment is repeated 351 times and is carried out across sample sizes from 100
to 500, with 50 sample increments. In each experiment, the approaches are compared
based on accuracy, 1— FE,,;. The outcome of an experiment identifies which hypothesis
of the four approaches has the best accuracy. The approach with the highest accuracy

wins the experiment.

The overall results as well as wins, min, mean, and max accuracy for each
sample size are shown in Table 10.2. Some numbers are truncated to fit the table.

As the results show, the oracle performs the best.
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Table 10.2: Results from 351 experiments.

SCM All | 100 150 200 250 300 350 400 450 500
Wins 91 12 10 12 10 11 12 6 9 9

Max 1 82 64 75 &8 66 1 .70 .59 .60
Mean SO [ b1 51 B0 B1 48 B0 48 48 .50
Min 0 3340 14 33 22 33 0 0 .23

Oracle | All | 100 150 200 250 300 350 400 450 500
Wins 114 8 10 9 11 16 12 18 15 15

Max S5 .60 58 .63 .75 .70 .61 .62 .62 .60
Mean HO [ 49 49 49 51 50 B0 B1 .50 51
Min 33 .36 33 37 42 40 39 43 41 .38

Rand All | 100 150 200 250 300 350 400 450 500
Wins 71 10 7 8 7 8 8 4 9 10
Max 1 750 .65 1 1 .75 64 .69 .66 .66
Mean 49 | .50 50 51 49 50 47 48 .50 .50
Min 0 32 33 33 0 0 0 34 33 .39
Guided | All | 100 150 200 250 300 350 400 450 500
Wins 75 9 12 10 11 4 7 11 6 D

Max 41 .63 .67 74 b5 B8 .52 b5 .54 .56
Mean 49 .49 50 51 49 48 49 49 49 49
Min S | .33 40 36 34 32 41 31 40 45

The interesting trend in the results is that as the number of samples increases,
the oracle’s performance improves relative to the other algorithms. It is also evident
that, in general, none of the approaches did very well.

8 Identifying Good Oracle Hypotheses

Using the multibox model means F;, and Ej.s cannot be used to evaluate hypothesis
accuracy. Since the model shatters every dataset, a hypothesis can always be found
that makes F;, = 0 and Fi.; = 0. We cannot trust these error metrics to identify a
good hypothesis.

Instead, we use algorithmic complexity theory to identify a good hypothesis.
Identifying a good hypothesis is a compression problem (Kearns and Vazirani, 1994).
But, calculating an arbitrary bitstring’s optimum compression is undecidable (Kol-
mogorov, 1998). However, an upper bound on compression can be calculated, and
consequently, an oracle’s good hypotheses can be identified by using the upper bound
with a gradient approach.

To derive the upper bound, we must first define the problem domain. The
problem domain is finite and discrete. There are two classes and an equal count of
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both classes.

o A is the complete sample space. For example, the problem domain is a 2D grid.
Each cell in the grid is a sample. In this case, A is all of the grid cells.

e h is the hypothesis being examined. H is the hypothesis space. H represents
all classifications on the dataset. diversity(H) counts the unique classifications
represented by H. Thus, diversity(H) = 24! and |H| > 2M!.

o h does not necessarily classify every cell in A. The set of cells that are classified
by his C.

o The set of samples is S. The subset of S in C is s¢ € S.

« The Kolmogorov complexity of h is K(h). Hy is the set of hypotheses where
K(h) = k. As such, diversity(Hy) < 2% and |Hi| = 2*. For a classification
region C there are 2/°! different classifications. Hj, can only describe, at most,
2F different classifications. So Hj, covers, at most, 2°7/°l possible classifications.

o If the hypothesis correctly classifies all samples, then the conditional algorithmic
complexity of the samples given the hypothesis is zero, K (s¢|h) = 0. However,
if there are misclassifications, then the conditional complexity is non-zero be-
cause extra information is needed to describe the misclassified samples. The
combination of both hypothesis complexity and sample conditional complex-
ity is classification complexity. The expression for classification complexity is

CC(Sc, h) = K(h) + K(Sc|h)

e The calculable upper limit for classification complexity with no misclassifica-

tions is D(h) > CC(sc, h).

In this analysis, #H is the multibox classifier. (See Algorithm 1.) For an h € H,
|h| is the number of boxes in h. Since each box in h can only have a single classification,
then diversity(h) < 2K" < 2lhl,

Note, K(h) < |h| because there can be a shorter description of h than to
enumerate all the boxes. As an example, the boxes form an infinitely long diagonal
line. The equation for the line has finite Kolmogorov complexity. The enumeration
of the boxes is an infinitely long bitstring. Thus, trivially K (h) < |h| = co.

As an upper bound on CC(sc, h), we have Dy (h) = |h| = >, .ep l0g2(1 — E2) «
|box|. The notation |box| counts how many samples from S are in the box. If all boxes
have E%” = 0, then there is no need for the second term, and CC(sc,h) = K(h).
However, if the boxes do have an E° > 0, there are a couple of key cases to consider.

1. If E%* = 2, then the box has a 50/50 chance of correct classification. If we
go back to our definition of Hj, we see it can describe, at most, 2¢7ICl of the
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classifications in C. For our subset of samples s¢, Hj, can describe 2515l clas-
sifications. If k& = |s¢|, then 2F~ls¢l = 1. This means Hi=|sc| can correctly
classify any set of samples of that size and cannot generalize. A hypothesis that
cannot generalize has a 50/50 chance of correct classification. Consequently, if
Ebor = %, then this is equivalent to H;—s for the samples in the box.

2. If E%® = 1, then this box is not an acceptable classifier. However, the classi-
fication of the box cannot always be changed to turn it into a good classifier.
In this case, there are only two classifications, so the box can be fixed. But in
general, there are an unlimited number of classifications. In the unlimited case,
a box that misclassifies everything cannot be fixed to provide a good classifier.

All these criteria are met by using logs(1 — E2%) * |box| for the second term.

If £2%° =0, Dy(box) =1 —logs(1) * |box| = 1.

If B2" = 1. Di(box) =1 —loga(3) * |box| = 1+ |boz|.

If E%° =1, Dy(box) = 1 — logs(0) * |box| = oo.

With a definition of the upper bound on imagination sampling complexity,
D1(h), we need a metric to measure how well a particular classification will perform.
In the following discussion, we assume h correctly classifies s¢ for simplicity of no-
tation. If h correctly classifies, then CC(s¢,h) = K(h). Additionally, k is used
interchangeably with K(h).

For this metric, we need a measure that

1. becomes 0 as K(h) — oo

2. becomes 1 as K(h) — |sc|

3. becomes 1 as K(h) = 0
all as [s¢| = |C|.

We measure the proportion of classifications by Hj, on s¢ by 2¥-15¢l. Therefore,
we can define an accuracy metric that follows these criteria.

lsel=Kh) 4

acc(se,C, K(h)) <2 T

1

‘SC‘ -1

If K(h) — 0, then acc(s¢,C, K(h)) <27
If K(h) = sc, then acc(s¢,C, K(h)) <271
If K(h) — oo, then acc(s¢,C, K(h)) <27 — 0.
These trends are illustrated in Figure 10.3.

N[
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Figure 10.3: Graph of acc function for 7§ = 5.

The next item is to invert acc. In other words, given F,,; and s¢, can we find
K (h)? The answer is: sort of.

We set acc(sc, C, K (h)) = 1—FE,,; and solve for K (h) to get our acc ™ (s¢, C, Eyur)
function:

lsel=K(h) _,

Il 2 11— Eout
- K
w -1 Z 10g2(1 — Eout)
— K(h
|SC|‘T() > logy(1 — Eout) + 1

|sc| = K (h) = |C|(logy(1 — Eou) + 1)
K(h) < lse| - Cl(logy(1 = Eyu) +1) = Da(h)

This metric falls apart if F,,; = 0 or % is too small because K (h) becomes
negative. A negative Kolmogorov complexity does not make sense. This discrepancy
is probably due to acc(se,C, K(h)) having an asymptote of 1, but never reaching 1.
Setting F,,; = 1 assumes the asymptote is reached. The other issue is the hidden
constant in Kolmogorov complexity, which is not addressed in these equations.

The acc metric does compare favorably with the equation boundaries for Occam
Learning from Blumer, Ehrenfeucht, Haussler, and Warmuth (1987). The following
equations show the equivalencies with acc.

e nis K(h)
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e mis |sc|
e cis Eout
The parameters 0 < a < 1 and ¢ > 1 are parameters that specify a particular
Occam algorithm.
1
n‘m®In(2) < —imln(l —¢€)

With @ = 0 and ¢ = 1, we can see the boundary conditions are similar to acc.
The exception is for € = %, which is more stringent than acc.

—Lon(1
ezO:ng—an(>:O
In(2)

L mmhn(y) 1
2 - In(2) 2
—=ml
e=1:n< an(())_oo

In(2)

The final step in defining the theory of imagination sampling is to find out when
we’ve converged on a good hypothesis. While it is not possible to know if we’ve found
the optimum compression, we can at least measure our progress toward local optima.

If we have found the optimum compression, then AAi(Ch') = 0. Since there is no
closed form, or any form, of formula for K (k) the best way we can find the derivative
is empirical observation. We want to observe that as |s¢| increases, K (h) remains
constant. To estimate K (h) we use validation to get an E,,; score, and acc™*(s¢, Eyut)
to estimate K (h).

Alternatively, we know that since K(h) < D(h), then AAﬂ(S(h) < AAI‘)S(:') for a large

cl
AD() 0, then AK(h) _ . The intuitive reason for this
Alsc] Iscl

A
is if D(h) is constant, then eventually K(h) must become constant. K(h) will not
decrease as the number of samples increases.
Once we've empirically solved for AAT—S(:‘) = 0, and found the optimum h, we will

see Ey — 0as both |C| — oo and |s¢| — oo. This is because in acc(se, C, k), |sc| and
Isc

enough A. Therefore, if

|C| will grow indefinitely as K (h) remains constant. Thus, lim|s.|—oc,|c|-s00 \flJI_k = 1.
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Accuracy

Figure 10.4: Keeping K(h) constant causes accuracy to in-
crease as number of samples increase.

Of course, in a finite, discrete realm both s¢c and C are bounded by |A|. But as
|A| is enlarged we will see FE,; — 0.

9 Simulated Oracle Experiment

To test this gradient-based approach with imagination sampling, a simulation of an
oracle is used. In the problem, the target function is a tilted rectangle, as exemplified
in Figure 10.5. The domain is a 100x100 grid making the rectangle pixelated.

The question is how to simulate a non-algorithmic oracle with an algorithm.
Such a simulation seems to be a contradiction in terms. However, the benefit the
oracle provides is the ability to infer the target function. To simulate the oracle, we
use a learning algorithm that already has the correct class of target function, in this
case a tilted rectangle. This learning algorithm is named an Occam learner. Figure
10.5 is the rectangle that the algorithm learned.
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Figure 10.5: Function learned from training samples by Oc-
cam learner.

The learned rectangle is not used to calculate the value for D(h). If we used
the rectangle, D(h) would give a complexity very close to K (h). But without prior
knowledge, we will not be able to calculate K (h) for the oracle’s hypothesis. The
multibox classifier and Ej.s are used to calculate D(h) instead. The goal is to see if
the D(h) metrics are reliable guides for identifying good oracle hypotheses.

The rectangular region is turned into a multibox, with one box for every cell
in the rectangular region. D;(h) is calculated from this multibox hypothesis. D;(h)
is not monotonic as its size will vary based on the samples used to construct the
rectangular region. K (h) is also estimated using Fy.q with Dy(h).

The D(h) metrics are calculated for hypotheses learned on different sample sizes.
Once a large enough size range has been covered, the gradients AA () are calculated.
The gradient technique is successful if it reliably identifies hypotheses that are highly
accurate. To find a good region, we look for areas where at least one of the two
gradients show a valley while the other gradient is negative. On the other hand, if
the gradient cannot dependably identify accurate hypotheses, then it is not a useful
technique. The graph in Figure 10.6 shows that the gradient technique can reliably
identify high accuracy hypotheses with one anomaly.
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Figure 10.6: Example of the gradient-based approach work-
ing effectively. The vertical lines mark points where the gra-
dient is zero and the second derivative is positive. The shade
denotes which estimate of K (h) is used to calculate the gra-
dient. Dj(h) is the top line, Dy(h) is the bottom line, and
the accuracy is the middle line. Scales are not given for the
estimates as the important aspect of the estimates is the gra-
dient.

The gradient technique does not guarantee the global best accuracy. See the
second gradient marker from the left in Figure 10.6. While it looks like the marking
is in error since it appears that both K(h) estimates are peaks, there are actually
slight depressions in the peaks. This shows the gradient method can only guarantee
local optima, which may be very local.

10 Empirical Gradient-Based Approach Results

The gradient-based approach is tested using the results from the first experiment.
There are nine different sample sizes ranging from 100 to 500 samples in incre-
ments of 50 samples. Each increment is the addition of new samples to the previous
set. The actual sample sizes are smaller due to the cleaning and equalizing processes.
The range of samples is tested on a pair of variables, which form the x,y coor-
dinates for the scatterplot. An example of the scatterplot is in Figure 10.2. There
are 37 variable pairs in the results.
A particular experiment is identified by the sample size and variable pair. The
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gradient is calculated over a range of sample sizes for a variable pair. The gradient
is then calculated with both the Dy and D, complexity metrics.

The gradient-based approach looks for three consecutive experiments that meet
these criteria:

1. s¢ increases across all experiments
2. A D(h) metric decreases and then increases
3. The other D(h) metric is not increasing

If these conditions are met, then the gradient has hit a minimal point. When this
happens, F,,; is at a minimal, or has a negative gradient.

There are 259 experiments that can potentially meet the gradient criteria. We
cannot know whether the first and last sample sizes are at minimal points so they
are excluded. There are 92 (36%) experiments where the E,,; is at a minimal point
leaving only 10 experiments that meet the criteria. Five of the 10 (50%) have an
E,,; at a minimal. The gradient-based approach boosts the accuracy of identifying
minimal FE,,; by 14%. The mean accuracy of the 10 experiments is 0.52 and the
median is 0.54, both higher than the mean of all the oracle’s hypotheses as well as
the algorithmically generated hypotheses. However, the p-values for two sided t-tests
on these results are 0.27 and 0.24, respectively. Thus, the results are not statistically
significant.

11 Conclusion

The purpose of this project is to demonstrate that oracles can generate better hy-
potheses when compared to algorithmic approaches. To test the oracles’ performance
against algorithms, an algorithmically unlearnable classification model is used. The
classification model, multiboxes, shatters all datasets. This means a good hypothesis
must be selected based on compression, but finding a good compression is an unde-
cidable problem. Consequently, due to the No Free Lunch Theorem, no multibox
learning algorithm will do better than random sampling.

A dataset with anonymized features is chosen so the oracle does not have access
to domain knowledge. The oracle outperforms the tested algorithmic approaches on
the anonymized dataset by 114-to-91 successes. Due to the improbability of this result
given the NFLT, it shows that the oracle has a non-algorithmic learning capability
and can out-perform algorithmic learning in general.

Furthermore, a gradient-based approach for identifying good hypotheses is de-
rived from the theory of imagination sampling. The theory defines how the accuracy
of an oracle’s hypothesis is based on hypothesis complexity. The complexity of the
oracle’s hypothesis is not directly calculable but can be estimated with an upper
bound. The gradient-based approach is used on the upper bound to identify when
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a minimal complexity has been found. This minimal complexity identifies a good
hypothesis.

The gradient-based approach works with a simulated oracle. The approach is
also tested on the results from the initial experiment. It boosts identification of good
hypotheses by 14% and improves the mean and median hypothesis accuracy to 0.52
and 0.54. However, the results are not statistically significant, with p-values of 0.27
and 0.24 using the t-test.
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