
32 Letters and Notes

For example, beings (as well as possible beings and things
impossible of being) can be understood in the context of
possible worlds. A “possible world” is a sufficiently complete
description of possible states of affairs described through
chains of propositions. We may observe that things impos-
sible of being, such as a square circle, have in them mutu-
ally inconsistent required core attributes; they cannot be
realised in any possible world. Possible beings would exist
in at least one possible world were it actualised.

For instance, a contingent being B that depends on C might
exist in a world W and not in a closely neighbouring one W ′
if C is present in W but not W ′; C thus being an enabling,
necessary causal factor for B. By contrast, a necessary be-
ing F will exist in all possible worlds, showing itself to be
a framework element for such a world.

A key insight is that for any world W to be distinct from W ′
it requires some factor A in W that is absent in W ′. We may
then partition the factors of W as W = {A|¬A}. After parti-
tioning, we will have two distinct groups—the factor A and
all of the factors which are not A. The null set corresponds
to zero. Each particular set in the partition can be counted
as the number one, and the combination of both partitions
(even in a single world where A is an empty set) is two.
Thus, for any particular possible world W , the quantities
0, 1, 2 are necessarily present. Taking the von Neumann
construction, immediately we find N, thence (using addi-
tive inverses) Z, so also (taking ratios) Q and (summing
convergent power series) R; where Z provides unit-stepped
mileposts in R. That is, a structured core of quantities will
be present in any W , and we may regard mathematics as
the study of the logic of structure and quantity. Extensions
to the hyperreals R∗ follow by construction of some H that
has as reciprocal h = 1

H closer to 0 than 1
n for any n in N.

Therefore, relationships and linked operations across such
quantities will also be present, or may be constructed as
needed. Illustrating, after Abraham Robinson (Robinson,
1966), hyperreals allow calculus to be treated as extensions
of algebra in R∗.

Thus, while bare distinct identity and coherence focused on
quantities will not cause things by the inherent potential or
action of such entities, they instead are logical constraints
on being and are tied to what can or must be or cannot
be or happens not to be. So, too, we may see that the
abstract logic model worlds that we may construct then
lead to key entities that if necessary are framework to any
possible world; thus applicable to our common world. By
contrast, if certain quantities and relationships are merely
part of the contingencies of some W ′′ that is close enough
to our own, they may provide adequate analogies for mod-
elling.

As a result, we have good reason to expect that mathe-
matical reasoning and core entities will in many cases be
highly relevant to and have powerful predictive power for
our common world.

Robinson, Abraham (1966). Non-Standard Analysis. Ams-
terdam: North-Holland Publishing Company.

Wigner, Eugene (1960). “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences”. In: Communica-
tions in Pure and Applied Mathematics 13.1, pp. 1–14.
doi: 10.1002/cpa.3160130102.

Independence Conservation and
Evolutionary Algorithms
Eric Holloway
DOI: 10.33014/issn.2640-5652.2.1.holloway.2

Levin’s Law of Independence Conservation

Leonid Levin’s 1984 article (Levin, 1984) is the first to this
author’s knowledge to prove a fully stochastic conservation
of information law. Levin titled his law ’independence con-
servation’ which he considered fairly obvious, describing it
as “Torturing an uninformed witness cannot give informa-
tion about the crime!”

Levin’s law is not well known, which is unfortunate since
the more commonly known conservation laws are focused
either only on the random or deterministic case. Levin’s
law is remarkable because it unifies both the random and
deterministic cases, showing that the combination also can-
not result in information increase.

The second remarkable thing about his law is how easy
it is to prove, given some preliminaries about algorithmic
information.

Volume 2, Issue 1

Independence Conservation and Evolutionary Algorithms 33

Algorithmic Information Theory
Background

First is required the notion of algorithmic information,
which is defined on bitstrings. Algorithmic information is
the length of the shortest program that generates a partic-
ular bitstring.

K (x) := min
y |U (y)=x

|y |. (1)

The shortest program is itself known as the elegant program
for that particular bitstring. Each bitstring has a unique
elegant program.

y∗ := arg min
y |U (y)=x

|y |. (2)

All programs either terminate after a fixed amount of time,
or never terminate. All the programs in question are known
as prefix free, which means that no terminating program
begins another terminating program.

Algorithmic mutual information is the length of this pro-
gram if we are also provided another bitstring as input,
subtracted from the length if we are not provided the extra
input bitstring.

I (x : y) := K (y) − K (y |x). (3)

Unfortunately, this basic definition of algorithmic mutual
information is only symmetric under a logarithmic error,
because we have to mark where one bitstring starts and
the other ends. This requires a number of bits logarithmic
on the size of the shortest bitstring, which is x in this case.

I (x : y) − I (y : x) = O(log(x)). (4)

We can improve the definition of algorithmic mutual infor-
mation to be completely symmetric under a constant that
is independent of the bitstrings we are looking at, which in
other words means we don’t have to worry about the con-
stant and the algorithmic mutual information is symmetric
as far as we are concerned. This improvement is to use
the elegant program of the input bitstring instead of the
bitstring itself.

I∗(x : y) := K (y) − K (y |x∗). (5)

Since the elegant program halts once it has generated the
input bistring, we know we can start on the next bitstring,
so we avoid having to encode the bitstring length. This
saves us from having to use the logarithimic term.

I∗(x : y) − I∗(y : x) = O(1). (6)

One final fascinating point on algorithmic information is
that we can also use it to create a universal distribution.

m(x) := 2−K (x) . (7)

“Universal” means is that we have a distribution that pro-
vides the highest probability for every bitstring possible,
within a multiplicative constant, under the assumption that
we are only dealing with computable generating sources for
the bitstrings.

m(x) ≥ p(x) ∗O(1). (8)

The computable distribution assumption is a reasonable as-
sumption for dealing with physical phenomena, since (as far
as we know) everything physical can be modeled to theo-
retically perfect accuracy with enough computational re-
sources.

Proving Levin’s Deterministic Law

Alright, so now onto proving Levin’s law.

We first start with a simple lemma, that providing more
information can only decrease conditional algorithmic in-
formation. In other words, the more we know about y, the
less information we need to describe y.

K (y |x) ≥ K (y |x, z) +O(1). (9)

We now introduce another simple lemma that with a pro-
gram to generate x, namely z which we execute with Turing
machine U to generate x,

x = U (z), (10)

34 Letters and Notes

we can generate both x and z. Thus, the joint information
is the same between z and x, z.

K (z) = K (x, z) +O(1). (11)

This also means to generate the triple {y, x, z} we only need
y and z.

K (y, x, z) = K (y, z) +O(1). (12)

Since it is the case that

K (y |x, z) = K (y, x, z) − K (x, z). (13)

Then performing replacements to Equation 13 with Equa-
tions 11 and 12, we get

K (y |x, z) = K (y, z) − K (z) (14)
= K (y |z). (15)

Combining Equations 9 and 14 shows us that x can never
tell us more about y than z.

K (y |x) ≥ K (y |x, z) (16)
= K (y |z). (17)

We can then use Equation 16 to show running a program
f on i does not increase mutual information with y. The
notation U (f .i) to mean we’ve run program f with input i
using a universal Turing machine U.

First we decompose the mutual information.

I∗(f (i) : y) = I∗(U (f .i) : y) (18)
= K (y) − K (y |U (f .i)). (19)

(20)

Now, we set z = f .i and x = U (z) = U (f .i), and then apply
Equation 16 to Equation 18.

I∗(f (i) : y) = I∗(x : y) (21)
= K (y) − K (y |x) (22)
≤ K (y) − K (y |x, z) (23)
= K (y) − K (y |z) (24)
= I∗(z : y) (25)
= I∗(f , i : y). (26)

Giving the final concise result,

I∗(f (i) : y) ≤ I∗(f , i : y). (27)

This Equation 27 states that executing function f on in-
put i does not produce any more information about y than
the function and input before they are executed. In other
words, running a program doesn’t produce any information.

Proving Levin’s Random Law

Now with the deterministic version out of the way, we can
move onto the random version.

The random version asks, what if we generate f randomly,
could that result in an information gain? This question is
based on the fact that generating f randomly will result
in an f with a lot of algorithmic information, since it will
be incompressible. So, even though running U (f .i) doesn’t
give us anything new, the initial selection of f may start us
off with a good amount of information about y.

Levin’s second step in proving the random law shows this
intuition is false. To prove the second law, we will rely
on the dominance property of the universal distribution in
Equation 8.

∑

f

p(f)I∗(f , i : y) =
∑

f

p(f) log2
m(f , i |y)
m(f , i)

(28)

≤
∑

f

p(f) log2
m(f , i |y)
m(f)m(i)

(29)

≤ log2

∑

f

p(f)m(f , i |y)
m(f)m(i)

(30)

≤ log2

∑
f m(f , i |y)
m(i)

(31)

= log2
m(i |y)
m(i)

(32)

= K (i) − K (i |y) (33)
= I∗(i : y) (34)

Volume 2, Issue 1

CrowdRank: A Simple Ranking Algorithm for Crowdsourced Rating Systems with Uneven Participation 35

Which gives us the result that randomly generating an f is
not expected to provide any information about y.

∑

f

p(f)I∗(f , i : y) ≤ I∗(i : y). (35)

To wrap up the independency conservation law, we apply
Equation 27 to Equation 35.

∑

f

p(f)I∗(f (i) : y) ≤
∑

f

p(f)I∗(f , i : y) ≤ I∗(i : y). (36)

Evolutionary Algorithms

What sort of impact, if any, does the law of independency
conservation in Equation 36 have on evolutionary algo-
rithms?

One of the simplest implications is that if there is a target
area independently designated by y, then it is not possi-
ble to randomly evolve population i towards y without any
fitness information.

However, there are also implications even if there is fitness
information provided for the evolution of i.

Let’s say that f represents one round of an evolutionary
algorithm applied to i, which consists of the following steps:

1. crossover population

2. vary population

3. select population

i is defined as a population of bitstrings selected at random.

We then define y as the set of bitstrings rated at a certain
level of fitness.

Part of f stays constant, and another part is varied ran-
domly, such as mutation and which bitstring sections are
crossed. We denote the random part as r.

This gives us a surprising result.

∑

r

p(r)I∗(f (i, r) : y) ≤ I∗(f , i : y). (37)

Equation 37 states that each round of randomized evolution
provides no further information about the fitness region y
than already existed in the initial conditions of the original
population i and the evolutionary algorithm f . Thus, this
equation proves that evolutionary algorithms cannot gen-
erate algorithmic mutual information, even in regards to
regions specified according to fitness.

Levin, Leonid A (1984). “Randomness conservation inequal-
ities; information and independence in mathematical
theories”. In: Information and Control 61.1, pp. 15–37.

CrowdRank: A Simple Ranking
Algorithm for Crowdsourced Rating
Systems with Uneven Participation
Jonathan Bartlett
DOI: 10.33014/issn.2640-5652.2.1.bartlett.3

Introduction

Public rating systems are difficult to score well. Voting
systems tend to simply favor what is already popular. Av-
eraging systems tend to have significant variance if there
are not enough people scoring.

For instance, let’s say that I run a songwriting contest and
have 100 entries. I then put it out to a public vote on the
Internet to see who wins. Most people are not going to lis-
ten to all 100 songs. If I do a simple “thumbs up” approach
and count how many votes a song has, then whichever song-
writer has the best existing following will simply tell their
fans to vote for them, and it will simply devolve into a
popularity contest.

Let’s say instead I do a rating system where you can rate
a song between 0 and 100. Now, songs by popular artists
will actually be negatively weighted because they will have
more visibility for negative ratings. It is not hard for a few
votes to be all 100s, but it is hard for a thousand votes to
be that way. Thus, those who have fewer ratings have an
advantage.

