
80 Letters and Notes

the data, the more they classify each sample incorrectly.

Russell, S and P Norvig (2009). Artificial Intelligence: A
Modern Approach. 3rd ed. Pearson.

The Possibility of Spontaneous
Generation of Self-Replicating
Systems
Gary Prok
DOI: 10.33014/issn.2640-5652.1.2.prok.1

It has been glibly stated that given enough time, a universe
of monkeys at typewriters could write Hamlet. If this is
true then perhaps the universe of particles could accidently
assemble the right configuration of stuff to spark life. Yet
the universe today is not even old enough to allow all the
resources in the visible universe to work together with the
tiniest probability of success to randomly generate the first
200 characters of Hamlet. A shorter 142-character string of
the start of Hamlet is a unique string of information which
is of 10210 possible strings of 142 characters. 10210 random
tries would give a chance of

(
1 − 1

e

)
, or ~63%, for generat-

ing this simple 142-character passage. This might be only
for a fleeting instant at some corner of the universe, but
nonetheless it would be spontaneously generated. Adding
another 58 characters to total 200 characters reduces the
chance to a minuscule value. Spontaneous generation of
life it seems, would require even more resources or time.

Seth Lloyd has estimated the computational capacity of the
universe to be 10120 operations from the start to date, on
a register of 1090 bits (Lloyd, 2002). A register of 1090 bits
contain nearly 1090 different 142-character length strings.
So, the universe could generate at most 10210 tries to date.
10210 is approximately 2700, or all of the possible permu-
tations of 700 bits. Although this computational capacity
cannot generate Hamlet in its entirety by chance, or even
the first 200 characters, perhaps it can be shown to be suf-
ficient to spontaneously generate life.

Another bound was offered by Dembski as 10150, or approx-
imately all the possible permutations of 500 bits (Dembski,

1998, pg. 213). This is more restrictive, but may be a more
realistic estimate for practical things like the probability of
spontaneous life.

One way of quantifying the needed time and resources is
to consider a simple proxy for life. A proxy for abiogenesis
requires a simple system that allows a means for an informa-
tion string to induce its own replication as well as a means
to execute this replication. This proxy could be a simple
system of things that operate on such things to make more
such things. Lambda calculus is a system of mathematical
logic reduced to a minimal set of symbols and rules. Ex-
pressions in lambda calculus can operate on other such ex-
pressions to generate more such expressions. Furthermore,
lambda calculus is a universal model of computation and is
Turing complete. It is enlightening to see how much infor-
mation is needed to describe a simple self-replicating set of
statements in lambda calculus. If a universe of monkeys or
of particles can generate this simple set of statements, then
perhaps it can do the same with material stuff and spark
life.

Lambda calculus is considered to be a minimally simple
programming language; it is hard to conceive of a simpler
language. It was created by Alonzo Church as part of his
research into the foundation of mathematics and uses three
simple rules, yet it is capable of expressing any computa-
tion. Its simplicity results in bloated expressions for simple
concepts, like numbers, or “true” and “false”. Its simplicity,
however, also makes it a model for a system most likely to
spontaneously generate.

The fundamental concept allowed by lambda calculus is
substitution. (λx.fx) is an expression in lambda calculus
where ”λ” indicates that the next variable is a free variable
to be substituted, “x” is the name of the free variable, and
“.” indicates that what follows is an expression or function
in which the free variable is to be substituted. The value
or expression to be substituted for x is placed to the right
of the expression. As an example, (λx.x2) y = y2, where
y is substituted for x. This substitution is called abstrac-
tion. Lambda calculus also allows for application, which is
a function operating on an argument.

A tutorial of lambda calculus is not included here, but is
readily found elsewhere.

Lambda calculus can be efficiently encoded in binary; bi-
nary lambda calculus (BLC) is an efficient way to encode
expressions in lambda calculus into binary (Tromp, 2007).
BLC uses De Bruijn indices instead of variables, where the
index value is a natural number indicating how many λs
back the variable refers. λx.λy.xy is written as λ λ 2 1
with De Bruijn indices (Bruijn, 1972). Three things that

Volume 1, Issue 2

The Possibility of Spontaneous Generation of Self-Replicating Systems 81

then need to be encoded into binary are abstraction (λ),
application, and natural numbers. The scheme is very sim-
ple:

Abstraction (λ) is encoded as 00
Application is encoded as 01
Natural number n is encoded as 111110. . .

(where there are n 1s)

λx.λy.xy is written as λ λ 2 1 with De Bruijn indices, which
in BLC is 00 00 01 110 10 (spaces added for understanding).

Lambda expressions are executed by the process of beta-
reduction. This means of execution can also be expressed
in lambda calculus and encoded in BLC. Lambda calculus
can express a list using the PAIR function. Other lambda
expressions can extract any particular element of a list.

The following elements comprise a self-replicating system
in lambda calculus:

• The self-replicating combinator Q; QQ -> QQ does not
propagate on beta-reduction, it merely replaces itself.
However, QE ((QE) nil) does propagate QE on beta-
reduction, by creating a growing list of (QE), (QE),
(QE). . . . (QE), nil (E is defined below). QE will prop-
agate any expression, P; QE (P nil) will generate a
growing list of P, P, P,. . . . P .

• A beta-reduction engine is required.

– If this engine were encoded into P, then a means
to translate from the information space to ma-
chine space also would be required and the initial
instance would have no machine with which to
execute.

– The least required total Kolmogorov complexity
would have the beta reduction engine simulta-
neously generated in the machine state, as op-
posed to being generated in the information media
state and subsequently transcripted to the ma-
chine state. The engine would act like a single
instance of a re-usable catalyst, operating on the
growing list.

A minimal self-replication system in lambda calculus would
generate a growing list of copied expressions, like (QE),
(QE), (QE). . . . (QE), nil. This would require:

• A means to encode Lambda calculus. BLC is an effi-
cient means.

• The E combinator, encoded in an information media
state, like DNA/RNA in life.

• The self-replicating combinator Q, encoded in the in-
formation media state.

• A program for self-reduction – encoded in the machine
state, like an enzyme protein assemblage in life.

The total information requirement to generate the minimal
proxy for abiogenesis is then:

• E, which operates on a list and extends it by one ele-
ment (based on Larkin and Stocks, 2004).

E = λx. (λp.(λl.xxp(PAIR pl))) ,

which in BLC is
000000111111111011101100000001011101011010
(42 bits long).

• Q, the self-application combinator.

Q = λx. xx

which in BLC is 00011010 (8 bits long).

• The application of Q to E, QE, which adds 2 bits.

• Nil, which is λz.λx.λy.x, adding 9 bits.

• Two more applications to create the expression QE
((QE) nil), adding 4 more bits

• A beta-reduction engine in machine space to process
((QE) E nil). This would at a minimum require:

a. A true statement: λx.λy.x (7 bits)
b. A false statement: λx.λy.y (6 bits)
c. An if-then-else statement: λz.λx.λy.zxy (15 bits)
d. Abstractions to delete and replace expressions

(>~15bits each, or >~30bits).

The bit count so far for a beta reduction engine is > 58.
Actual construction of the beta reducer could require
many more. A beta-reduction engine in an abstracted
lambda calculus has been found, which is longer than
200 bits (Mogensen, 1994). An engine in BLC would
require a similar number of bits.

So far we are up to many more than 123 bits, and likely
more than 265 bits, for a randomly-formed pair of infor-
mation strings, one in information space (DNA/RNA) and
one in machine space (protein/enzyme) which allows the
information string to propagate in a list.

It may be possible to compress these relatively short strings.
E in particular appears to be a compressible string, which

82 Letters and Notes

might allow for a reduced bit count. However, adding a
codec to the mix will certainly increase the bit count more
than it offers in compressive bit-reduction.

It is reasonable to think that a minimal basic precursor to
abiogenisis of life would require two random assemblages
with total information exceeding 265 bits. However, 265
bits is below the 500 bit Dembski limit and below the 700
bit limit based on Seth Lloyd’s analysis. This analysis does
not rule out the spontaneous, if fleeting, generation of a
self-replicating system somewhere in the universe at some
time in its past. The probability given the Dembski limit is(
1 − 1

e (500/265)

)
, or ~85%. The probability given the 700 bit

limit is
(
1 − 1

e (700/265)

)
, or ~93%.

Appending other features on to this analysis will require
more bits. Examples are:

• A means for the information describing the beta-
reduction engine in the machine space to be also ex-
pressed in the information space.

• A means for the information expressed in the informa-
tion space to be realized in the machine space, they
way a genotype becomes a phenotype in life.

• A means to operate on more than the first element
in the list to allow population growth that approaches
exponential. This will require information to describe
recursion on the TAIL function.

• A means to store the information and the beta-
reduction engine in the physical world.

Although these are needed and may well push the informa-
tion needs above 700 bits, they are beyond the scope of this
analysis.

This analysis does not rule out a single instance of the spon-
taneous generation of a self-replicating system somewhere
in the universe. It does, however, suggest that this is an ex-
traordinarily rare event. This analysis suggests that there
is less than 50% likelihood that 10 self-replicating systems
have spontaneously generated in the universe. Given the
vastness of the spacetime of the universe, an implication is
that any evidence of extra-terrestrial life would be evidence
of transpermia.

Bruijn, N G de (1972). “Lambda calculus notation with
nameless dummies, a tool for automatic formula ma-
nipulation, with application to the Church-Rosser the-
orem”. In: Indagationes Mathematicae 75 (5), pp. 381–
392. url: http://alexandria.tue.nl/repository/
freearticles/597619.pdf.

Dembski, W A (1998). The Design Inference: Eliminating
Chance Through Small Probabilities. Cambridge: Cam-
bridge University Press.

Larkin, J and P Stocks (2004). “Self-Replicating Expres-
sions in the Lambda Calculus”. In: Proceedings of the
Twenty-Seventh Australasian Computer Science Con-
ference (ACSC2004). Ed. by V Estivill-Castro. Dunein,
New Zealand, pp. 167–173.

Lloyd, S (2002). “The Computational Universe”. In:
Edge.org. url: https : / / www . edge . org /
conversation/seth%5C_lloyd-the-computational-
universe.

Mogensen, T (1994). “Efficient Self-Interpretation in
Lambda Calculus”. In: Journal of Functional Program-
ming 2.3.

Tromp, J (2007). “Binary Lambda Calculus and Combi-
natory Logic”. In: Randomness And Complexity, from
Leibniz To Chaitin. Ed. by C S Calude. World Scientific
Publishing Company, pp. 237–260.

