56

The Logical Possibility of Halting
Oracles

Eric Holloway
DOL: 10.33014/issn.2640-5652.1.1.holloway.3

A halting oracle is a kind of function that can determine
whether any computer program will halt. It is commonly
thought that halting oracles are logically impossible. This is
due to the common proof presented for the halting problem,
which is as follows.

Imagine we have a halting oracle function H(p,i), which
returns true if program p halts on input i, and false other-
wise.

We can also have a function defined as G(p): if H(p, p) is
true then loop forever, else halt.

If we run G(G), then we end up with a contradiction, be-
cause if H(G,G) halts then G(G) will not halt, and visa
versa. Consequently, the function H is impossible.

This proof introduces a confusion because it appears that
a halting oracle is logically impossible. However, the proof
only shows that it is impossible for a halting oracle to be a
finite Turing machine. It is still logically possible to have a
halting oracle that is not a finite Turing machine.

To see that halting oracles are a logical possibility, we can
construct our own halting oracle from logically possible
components.

First, note that all finite Turing machines form a count-
able infinite set. This means that we can match each finite
Turing machine with a positive integer. Imagine this as an
infinitely long index, with a numbered entry for each Turing
machine.

The second step is to note that each finite Turing machine
has a halting status. Each machine either halts or runs
forever. Consequently, we can take the infinite index from
the first step, and, for each Turing machine, add an entry
with its halting status. Thus, our index now consists of
three elements: an index number, the finite Turing machine
definition, and the machines halting status.

The final step is to imagine a search machine that has access
to this index. The difference between the search machine
and a finite Turing machine is that since the index is infinite
the search machine is also infinite, and thus the search ma-
chine does not show up in the index itself. The operation
of the search machine is to incrementally search the index
for a given finite Turing machine and return the finite ma-

Communications

CBI Blyth Institute

Letters and Notes

chines halting status. Since the set is countably infinite and
each finite Turing machine is paired with a finite number,
the search machine is guaranteed to halt with the halting
status for every finite Turing machine. Thus, the search
machine is a halting oracle.

Now we can address the question whether a halting oracle is
logically impossible. Since the search machine is a halting
oracle, then if the search machine is not logically impossible,
neither is the general concept of a halting oracle.

The search machine is composed of two main components.
If neither component is logically impossible, then neither is
their composition in the form of the search machine. The
components are:

1. The countable infinite index of finite Turing machine
halting statuses

2. The search procedure

Countable infinite sets are used regularly in mathematics
and are not logically impossible, although some branches of
mathematics deny their existence as an axiomatic decision.
Thus, component #1 is not logically impossible.

The search procedure can be encoded with a finite Tur-
ing machine that counts upwards incrementally, and can
call out to an external index to retrieve the finite Turing
machine definition and halting status. Since the search per-
forms an exact match with the input finite Turing machine
and the retrieved finite Turing machine, then the match can
be encoded as a finite Turing machine as well. Since finite
Turing machines are not logically impossible, then neither
is component #2, the search procedure.

Finally, the combination of the infinite index and the search
procedure is not logically impossible, since no further con-
cepts are added. Consequently, the search machine demon-
strates that halting oracles are logically possible.



